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1 Introduction

1.1 About Moto

Moto is a parameter estimation tool that can be used to determine the equivalent circuit parameters of induction
machines. The tool is intended for use in dynamic time-domain simulations such as stability and motor starting
studies.

Moto is unique in that it provides a selection of the most advanced parameter estimation algorithms, which
are more accurate and robust than those found in commercial power systems analysis software.

1.2 About Sigma Power Engineering

P SIGMAPOWER
-

Sigma Power Engineering Pty Ltd is an Australian electrical engineering consultancy and software devel-
oper.

We are a small team of power systems engineers with decades of experience in the utility, hydrocarbons and
mining sectors of Australia, Asia and Europe. Our primary focus is to offer the full range of power system studies
services, while also supporting our clients with our software tools, project management and design engineering
capabilities.

For more details, visit our website www.sigmapower.com.au.

1.3 BSD License

Redistribution and use in binary form is permitted provided that the following conditions are met:

1. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution

2. All advertising materials mentioning features or use of this software must display the following acknowl-
edgement: This product includes software developed by the Sigma Power Engineering Pty Ltd.

3. Neither the name of the Sigma Power Engineering Pty Ltd nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written permission.

1.4 Disclaimer

THIS SOFTWARE IS PROVIDED BY SIGMA POWER ENGINEERING PTY LTD ”AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL SIGMA POWER ENGINEERING PTY LTD BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTTAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.


http://www.sigmapower.com.au

2 Technical Background

2.1 Induction Motor Equivalent Circuits

An induction machine can be viewed as a generalised transformer with an air gap and a rotating short-circuited
secondary winding. The equivalent circuit of an induction motor is therefore similar to that of a transformer.
The key difference is in the rotor equivalent circuit, where the voltages and currents are proportional to the slip
frequ%ncy. This is commonly represented in the equivalent circuit by a variable (slip-dependent) rotor resistance

=)

For balanced steady-state analysis, it is acceptable to use a per-phase equivalent circuit. Analysis is also made
simpler by working with per-unit values, where the scaling factors required to calculate polyphase quantities
(such as polyphase power) are not required. The general induction motor per-phase equivalent circuit with all
parameters referred to the stator is shown in Figure

R(f.T) X(Ls, f)

— YL
o I

Figure 1: General induction motor equivalent circuit

The parameters of this equivalent circuit are as follows:

e R, is the stator resistance (pu)

X is the stator leakage reactance (pu)

X, is the magnetising reactance (pu)

R, is the core loss component (pu)

X, is the rotor leakage reactance (pu)

e R, is the rotor resistance (pu)
The motor equivalent circuit in Figure [I| shows that the parameters vary with frequency / slip, current (i.e.
saturation effects) and temperature, for the following reasons:

e AC resistances for the copper windings are temperature dependent [15]

e Inductances will vary due to eddy currents and saturation of teeth and core [I3]

e Rotor resistance is frequency (slip) dependent due to eddy currents in deep rotor bars or double cage
rotors [1]

e Impedances are affected by the skin effect at different frequencies [I]
For power system studies, it is desirable to use a motor equivalent circuit with constant parameters that are

valid over the full range of motor speeds (i.e. from 0 to 1 pu). It is important to note that these parameters will
not likely correspond to the real motor parameters, since as noted above, the real parameters are slip, current



and temperature dependent. However, the set of constant equivalent circuit parameters will match the motor’s
performance characteristics over the full speed range (e.g. torque-slip and current-slip curves, power factor,
efficiency, etc).

While others have attempted to apply motor models with variable parameters (for example, Haque in [2]), there
does not appear to be significant gains to be had by this approach and it only makes the model more complicated
and less manageable for standard power systems analysis programs. Therefore, only constant parameter models
are considered in Moto. In the following subsections, the two most common constant parameter equivalent
circuit models are presented.

2.1.1 Single Cage Model

The single cage model is simply the general equivalent circuit in Figure [I] with constant parameters. The single
cage model is normally suitable to represent the performance characteristics of wound-rotor motors. Two single
cage equivalent circuits are shown below in Figures [2| and |3| depicting the model with and without core losses
respectively. Note that in Figure [3| the core loss component is lumped as a single shunt resistance placed at
the input of the equivalent circuit. This is done for practical reasons as described in [12].

U, || } X

Figure 3: Single cage model with core losses (6 parameters)

2.1.2 Double Cage Model

To account for the effects of double-cage rotors or deep bar rotors (e.g. most squirrel-cage machines), a second
rotor branch is added to the equivalent circuit of the single cage model. Figures [4 and [5] show the double cage
model equivalen circuit with and without core losses. As in the single cage model, the core losses are represented
as a single shunt resistance at the input of the equivalent circuit.
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Figure 5: Double cage model with core losses (8 parameters)

In the equivalent circuit, the inner cage leakage reactance X,; is always higher than the outer cage leakage
reactance X,o, but the outer cage impedance is typically higher than the inner cage impedance on starting.
These conditions can be resolved by including the following two inequality constraints in the model [10]:

L4 Xrl > Xr?
L4 R’I"2 > er

2.2 Calculating Torque and Current from the Equivalent Circuit

The electrical torque developed in an induction machine is proportional to the square of rotor current, i.e.

pqg Ry
T=0nis ; (1)

where T is the electrical torque developed (N-m)
p is the number of motor poles

q is the number of stator phases

f is the nominal frequency (Hz)

R, is the equivalent rotor resistance ({2)

s is the motor slip (pu)

I, is the rotor current (A)

By using per-unit values, the constant terms can be eliminated and the equation above reduces to:

R,



where all the quantities in this equation are in per-unit values.

It can be sees that for any given motor equivalent circuit, standard circuit analysis can be used to calculate the
rotor current and therefore electrical torque. By way of example, the torque in the double cage model (without

core losses) as shown in Figure {4 will be calculated.

Recasting the impedances as admittances:

1
T R+ X,
1
=X,
1
T B
1
T B X

Applying Kirchoff’s law, the voltage U; at the magnetising branch is:

Up—-U0)Ys =U; (Yo + Y1 +Y2)
Un}/s = Ul (Y‘; + }/m + }/rl + Yr2)

UnY;
U,

T Y.+ Y + Yy £ Y

The per-unit stator current I, is therefore:

I, = (U, —Uh)Y,

The per-unit rotor currents in each cage I,.4 and I, are:

I, =UYn
Io =UY,2

Finally, the per-unit electrical torque developed in the motor is:

R Ry
T= ;1314' p I

(13)

A similar kind of analysis can be done for other motor equivalent circuit models to calculate the electrical torque

and current of the machine.

2.3 Torque-Speed and Current-Speed Curves

Based on the torque and stator current equations developed in the previous section, torque-speed and current-
speed curves can be constructed from the equivalent circuit for the full range of motor speeds (i.e. from standtill

to synchronous speed).

Examples of motor torque-speed and current-speed curves are shown in Figure [6] and Figure [7] respectively.
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Figure 6: Motor torque-speed curve
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Figure 7: Motor current-speed curve



2.4 Parameter Estimation Problem

The characteristics of an induction motor are normally provided by manufacturers in the form of a standard
set of performance parameters, with the following parameters being the most common:

e Nominal voltage, U, (V)

e Nominal frequency, f (Hz)

e Rated asynchronous speed, ny; (rpm)

e Rated (stator) current, I, 5; (A)

e Rated mechanical power, P, 5 (kW)

e Rated torque, T,, (Nm)

e Full load power factor, cos ¢ (pu)

e Full load efficiency, 1y (pu)

e Breakdown torque, Tp/T,, (normalised)

e Locked rotor torque, Tj,. /T, (normalised)

e Locked rotor current, I;./I, 1) (pu)

From previous sections, we know that a set of equivalent circuit parameters can yield specific torque-speed
and current-speed curves. So given a set of performance parameters that contain features on the torque-
speed and current-speed curves (e.g. breakdown torque, locked-rotor current, etc), is it possible to determine
the corresponding equivalent circuit parameters that yield these features? This is the crux of the parameter
estimation problem and can be posed as follows - "How can the motor performance parameters be converted
into equivalent circuit parameters?”.

While all of the performance parameters in the above set can be used in an estimation procedure, there are
actually only six indpendent magnitudes that can be formed from them: P, 1, Q1, Ty, Tir, L1y and ng [10].
These independent magnitudes will thus form the basis of the problem formulation, where the independent
magnitudes calculated from the equivalent circuit are matched with the performance parameters supplied by
the manufacturer.

The basic double cage model shown in Figure [4]is used to illustrate how these six independent magnitudes can
be calculated from the equivalent circuit model. Stator and rotor currents at slip s can be readily calculated
from the equivalent circuit as shown in section [2.2

Quantities for per-unit active power P, reactive power () and power factor cos ¢ at slip s can be calculated as
follows:

S(s) = UnIy(s)* (14)

P(s) =T(s)(1—s) (15)

Q(s) = 3{S(s)) (16)
R{S(s))

08 6(8) = TS ()

Nominal speed n, and full load slip s is calculated as follows:

_120f

Ng 18

) (18)

sp=1--L (19)
S



where p is the number of motor poles
f is the nominal frequency (Hz)
ny; is the asynchronous speed at full load (rpm)

Calculating the slip at maximum torque $;,q, is found by solving the equation:

dr
_ 2
5 =0 (20)

(Under the condition that the second derivative % < 0)

In the double cage model, the solution to this equation is not trivial and it is more convenient to use an estimate,
e.g. based on an interval search between s =0 and s = 0.5.

2.5 Problem Formulation Ignoring Core Losses
2.5.1 Single Cage Model (Ignoring Core Losses)

In the single cage model, the locked rotor torque 7}, and locked rotor current Ij. are not used because the
single cage model does not have enough degrees of freedom to capture both the starting and breakdown torque
characteristics without introducing significant errors [I1]. As a result, it is more commonplace to only consider
the breakdown torque 7Tp in the single cage model and simply ignore the torque and current characteristics
at locked rotor. For wound-rotor motors, this yields sufficiently accurate results (i.e. in terms of the resulting
torque-speed curve). However, a single-cage model is unable to accurately model the torque-speed characteristics
of squirrel cage motors, especially those with deep bars, and thus a double cage model should be used for these
types of motors.

Without taking into account core losses, the full load motor efficiency ny; also cannot be used (see section
for more details). Therefore, there are only three independent parameters that can be used in the problem
formulation: P, ¢, Qs and Ty.

These independent parameters can be used to formulate the parameter estimation in terms of a non-linear least
squares problem, with a set of non-linear equations of the form F(x) = 0:

N DN
[N
NN NI

~ o~ o~
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w

where F = (f1, fo, f3) and
x = (Rs, Xs, X, Ry, X,) are the equivalent circuit parameters of the single cage model

2.5.2 Double Cage Model (Ignoring Core Losses)

In the double cage model, the locked rotor torque 7;,- and locked rotor current I;,. are included as independent
parameters. As in the single cage model, the full load motor efficiency n¢; cannot be used without taking into
account core losses. Therefore, there are five independent parameters and the following non-linear least squares
problem:
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where F = (fla f27 f37 f4a f5) and
x = (Rs, Xs, Xon, Rr1, Xr1, Rro, X;2) are the equivalent circuit parameters of the double cage model

2.6 Problem Formulation Considering Core Losses

It was previously noted that without taking into account the core (and mechanical) losses, the motor full load
efficiency 1y, cannot be used as an independent parameter in the problem formulation. This is because efficiency
is calculated based on the ratio of output mechanical power to input electrical power. If the heat losses through
the core and rotor frictional losses are not taken into account, then the equivalent circuit is not suitable to
accurately estimate motor efficiency [2]. It follows that attempting to use the motor full load efficiency in the
estimation of the equivalent circuit without a core loss component would cause errors in the parameter estimates
(e.g. the stator resistance would be overestimated).

When core losses are included in the model, then the motor full load efficiency 7y can also be used as an
independent parameter. The problem formulations are restated below for the single cage and double cage
models with core losses taken into account.

2.7 Single Cage Model (with Core Losses)

The non-linear least squares problem for the single cage model with core losses is as follows:

w
—

w
N
D O —

~ o~~~
w
w

)

( )
f3(x) =Ty — T(Smaz) =
fa(x) = nfl —n(sf) =

w
=~

where F = (fla f27 f37 f4) and
x = (Rs, Xs, X, R, X, R.) are the equivalent circuit parameters of the single cage model (with core losses)

2.7.1 Double Cage Model (with Core Losses)

The non-linear least squares problem for the double cage model with core losses is as follows:

~ N~~~
W W W W w
© 00 3 O Ot

[N
(=)
N NI N
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where F = (flaf27f37f4a f57f6) and
x = (Rs, Xs, Xon, Rr1, Xo1, Rro, X0, R.) are the equivalent circuit parameters of the double cage model (with
core losses)

3 Parameter Estimation Algorithms

The parameter estimation problems formulated in the preceding sections can be solved by a variety of non-linear
least squares solver algorithms. As with all non-linear least squares problems, closed form solutions are generally
not available and iterative algorithms are used to converge on a solution by minimising error residuals.

Motor parameter estimation algorithms generally fall under three broad classes:

1. Descent Methods: are the class of algorithms based on variations of Newton’s method for convergence
to a solution, e.g. Newton-Raphson, Levenberg-Marquardt, etc

2. Natural Optimisation Methods: are the class of algorithms based on processes found in nature where
successive randomised trials are filtered for ”fitness” at each iteration, e.g. genetic algorithm, particle
swarm optimisation, ant colony optimisation, simulated annealing, etc

3. Hybrid Methods: are the class of algorithms that use a combination of both descent and natural
optimisation methods.

Moto provides the following seven (7) algorithms for solving parameter estimation algorithms:

e Newton-Raphson (Descent)

e Levenberg-Marquardt (Descent)

e Damped Newton-Raphson (Descent)

e Genetic Algorithm (Natural Optimisation)
e GA-NR (Hybrid)

e GA-LM (Hybrid)

e GA-DNR (Hybrid)

3.1 Newton-Raphson Algorithm

Of the class of descent methods used to solve non-linear least squares problems, the Newton-Raphson (NR)
algorithm is probably the most straightforward. The NR algorithm is an iterative method where each iteration
is calculated as follows:

zFtl = 2% — b, J7F (zF) (41)

where £¥*1 is the solution at the (k + 1)th iteration, «* is the solution at the kth iteration, h, is the step-size
coefficient (more on this later) and J is the Jacobian matrix evaluated with the parameters at the kth iteration,

xk.

The Jacobian matrix J has the general form:

ofr ofr
le e a$6
J= : oo (42)
Ofs Ofs
811 et 815
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For systems where it is impractical to compute the exact partial derivatives analytically, a numerical approxi-
mation may be used with finite difference equations:

ofi  filx+65h) — fi(x)
dx; h

(43)

where d; is vector of zeros with a single non-zero value of 1 at the j-th element and h is a constant with a very
small absolute value (e.g. 1 x 1079).

A modified form of the NR algorithm proposed in [12] for the double cage model is shown in Figure |8} This
algorithm was selected because of its completeness, numerical accuracy and robustness compared to previously
proposed methods (for example, in [4], [13] and [15]). Furthermore, the algorithm can be applied using commonly
available manufacturer data, whereas other algorithms require more detailed data that may not be readily
available (for example, the full torque-speed curve in [6]). Two other features of the algorithm that aid its
robustness are worth highlighting:

3.1.1 Need for Linear Constraints

It can be seen from the problem formulations in the previous chapter that in each case, the number of paramters
to be estimated (i.e. unknown variables) exceeds the number of simultaneous equations. In other words, the
systems of equations are all underdetermined. Therefore, in order to make the systems exactly determined and
solvable with descent algorithms such as the NR algorithm, we must either:

1. Fix two parameters a priori (i.e. parameters are "known”)

2. Impose two constraints on the problem formulations, e.g. linear constraints

The use of linear constraints was found to be superior to fixed parameters and therefore, the descent algorithms
in Moto include two linear restrictions by default.

It was shown in [I0] that the stator resistance Ry was the least sensitive parameter in the equivalent circuit,
i.e. variations in the value of Rs had the least significant effect on the resulting torque-speed and current-speed
curves. Therefore, R; can be subject to a linear restriction by linking it to the rotor resistance, leading to the
first linear constraint:

e R, = kR, (for the single cage model)
e R, =k, R, (for the double cage model)

Where k, is a constant linear constraint

Moreover, it is assumed that the rotor reactance is linearly related to the stator reactance, leading to the second
linear constraint.

o X, =k, X, (for the single cage model)
e X,5 =k, X, (for the double cage model)

Where k, is a constant linear constraint

3.1.2 Parameter Constraints

The inequality constraints of the double cage model (X,1 > X,2 and R,o > R,1) can be implicitly included into
the formulation by a simple change of variables [10]:

13
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Figure 8: Flowchart for conventional NR algorithm

14




1 = Ry

T2 = Rpo — Rpq
3 =X,

T4 = X

r5 = X1 — ke X
z6 = R,

Furthermore, only the absolute values of the parameter estimates are used to ensure that no negative parameters
are estimated.

3.1.3 Adaptive Step Size

The step size h, in equation is a scaling term that determines how far the algorithm should go along the
descent direction J~!F(x*). Choosing a step size that is too large risks the algorithm not converging. On the
other hand, choosing a step size that is too small can cause the algorithm to converge too slowly. An adaptive
step size can avoid both these problems by starting with a high step size and only reducing it if the algorithm
does not converge (refer to the flowchart in Figure .

3.1.4 Initial Conditions

For the base case NR algorithm, the initial parameter estimates are selected as follows [10]:

UnSf

R7-1 — ﬁ’ﬂ
v U
Qr1

X, =0.05X,,
R, = k. Ry
Ry2 =5R;
X1 =12X;
X =k X
R. =10

3.2 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm, sometimes called the damped least-squares algorithm, is another
popular technique for solving least-saures problems [5] [7]. In the LM algorithm, each iteration is calculated as
follows:

2h ! = 2k — [IT3 + \diag(37T)] " ITF(2) (44)

where x**! is the solution at the (k + 1)th iteration, «* is the solution at the kth iteration, A is the damping
parameter (more on this later) and J is the Jacobian matrix evaluated with the parameters at the kth iteration,
x* (as described previously in Equation .

Parameter constraints as implemented in the Newton-Raphson algorithm are also applied in the LM algorithm
(refer to Section [3.1.2). The initial conditions are also selected in the same way as the NR algorithm.

15



The selection of the damping parameter A affects both the direction and magnitude of an iteration step. If the
damping parameter is large, then the algorithm will move at short steps in the steepest descent direction. This
is good when the present iteration is far away from the solution. On the other hand, if the damping parameter
is small, then the algorithm approaches a Gauss-Newton type method, which exhibits good convergence in the
neighbourhood of the solution.

Therefore, the damping parameter should be updated at each iteration depending on whether the algorithm is
far or close to the solution. The ”gain ratio” method suggested for adjusting the damping factor by Marquardt
in [f]was not found to be effective in induction motor problems. Therefore, Moto uses a damping factor
adjustment method based only on the error term (i.e. the numerator of the gain ratio).

The damping parameter is updated as follows:
Ax 8, if F(zF) - F(zF) <0
yo (e iEEh SR )

Where 8 and « are algorithm control parameters. In Moto, the algorithm control parameters are § = 3 and
v =3.

3.3 Damped Newton-Raphson Algorithm

The damped Newton-Raphson algorithm is a variation of the conventional NR algorithm where a damping
factor is applied to help get around problems with near-singular and/or ill-conditioned Jacobian matrices. In
the damped NR algorithm, each iteration is calculated as follows:

Pt = b — h, (371 + ADF (") (46)

Where the damping parameter X is adjusted at each iteration based on the error term as follows:

\ {)\ x B, if F(zk) — F(zk+1) <0 )

2 if F(z*) — F(z**1) >0
Where 8 and « are algorithm control parameters. In Moto, the algorithm control parameters are § = 3 and
v =3.

All other aspects of the damped NR algorithm are the same as per the conventional NR, algorithm described in
Section (e.g. parameter constraints, adaptive step sizes, etc)

3.4 Genetic Algorithm

The genetic algorithm (GA) is part of the class of evolutionary algorithms modelled on natural selection and
evolutionary processes to optimise non-linear cost functions. It was developed in the 1960s and 1970s, but only
gained widespread popularity in the late 1980s when advances in computational processing power made the
algorithm more practical to apply on desktop computers [3].

The goal of the genetic algorithm is to minimise a non-linear cost function. For non-linear least squares problems,
this can be interpreted as minimising the squared error residuals. The general methodology can be summarised
under four broad headings - 1) Initialisation, 2) Fitness and Selection, 3) Breeding and Inheritance and 4)
Termination.

1. Initialisation: an initial population of candidate solutions to minimise the cost function is first generated,
typically via random sampling. The size of the population is an algorithm setting and largely depends on
the nature of the problem.

2. Fitness and Selection: the population is ranked according to the fitness of its members. The fitness of
each member is normally calculated from the cost function, where lower values signal higher fitness. The
fittest set of members are selected to evolve / breed the next generation.

16



3. Breeding and Inheritance: the members chosen in the selection stage are designated as ”parents”
and evolved to create the next generation of candidate solutions (”children”). There are three common
methods for generating children - elite children, crossover and mutation.

Elite children are simply clones of the fittest-ranked parents. In the crossover operation, pairs of parents
are bred together by randomly selecting traits from each parent that are passed on to the children. In
the mutation operation, the traits of a parent are randomly altered (mutated) and then passed on to the
children. Crossover and mutation are obviously inspired by nature and in the genetic algorithm, they can
either be implemented simultaneously or as separate processes.

4. Termination: once the next generation of candidate solutions has been produced, the population is then
ranked again according to their fitness. Since the least fit members of the previous generation have been
discarded, the average fitness of the new generation should be higher. Successive generations are bred
until either a converging solution is found (i.e. a squared error < 1 x 107°) or the maximum number of
generations is reached.

In the context of motor parameter estimation, the genetic algorithm is used to minimise the squared error of
the problem formulation vector F. In GA terminology, the squared error is the fitness function and is calculated
as follows:

fitness = FF’ (48)

where F = (f17f23f37f43 f5vf6)

Genetic algorithms can be binary coded where the solution paramaters are quantized into binary strings (for
example, in [8], [I6] and [9]). However, the equivalent circuit parameters in a motor are continuous parameters
and not naturally quantized. Thus, binary coding necessarily imposes limits on the precision of the parameters
(i.e. due to the chosen length of the binary string). For this reason, a continuous parameter algorithm is used
instead.

An initial population of n,,, parameter estimates are randomly sampled from a uniform distribution with upper
and lower limits as shown in Table [Il

Parameter Range of Initial Estimate (pu)
Lower Bound | Upper Bound
R, 0 0.15
X 0 0.15
Xm 0 5
Ry 0 0.15
X1 0 0.30
Ry 0 0.15
X2 0 0.15
R, 0 100

Table 1: Range of initial parameter estimates

The fitness of each member in the population is then calculated and ranked. The lowest fitness members are
discarded and the rest are retained to form the mating pool for the next generation (there are n,,, members
in the mating pool).

The fittest n. members in the mating pool are retained for the next generation as elite children.

Of the remaining 7,0, — 1. children to be created for the next generation, c¢% will be produced by crossover
and the rest (1 — ¢;%) by mutation. The proportion ¢y is called the crossover fraction.
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1. Crossover: in the crossover process, two members of the mating pool are randomly selected and combined
by taking a random blend of each member’s parameters, e.g. the crossover of parameter Ry:
Rs,child = aRs,parentl + (1 - Q)Rs,parentQ (49)
where « is a random variable selected from a uniform distribution over the interval [0, 1]

2. Mutation: in the mutation process, a member of the mating pool is randomly selected and its parameters
are mutated by adding Gaussian noise with parameter-dependent standard deviations (see Table .

Parameter | Standard Deviation (o)
R 0.01
Xs 0.01
Xm 0.33
R 0.01
X1 0.01
R.o 0.01
Xro 0.01
R, 6.67

Table 2: Standard deviations for mutation noise

The fitness of the next generation is then calculated and the process repeats itself for n4,, generations.

The default settings for the genetic algorithm implemented in Moto for motor parameter estimation are shown
in Table[3] A flowchart of the genetic algorithm implemented in Moto is shown in Figure [0

Setting Setting Description Default Value
Npop Population of each generation 20
Npool Number of members in the mating pool 15
Ne Number of elite children 2
cy Crossover fraction 80%
Ngen Maximum number of generations 30

Table 3: Default settings for genetic algorithm

3.5 Hybrid Algorithms

It was shown in [14] that linear restrictions imposed on Rs and X, have a significant influence on the convergence
and error rates of descent algorithms. The parameters Rs and X,.o are also difficult to estimate accurately based
solely on commonly available manufacturer data. Moreover, the selection of initial conditions can also affect
the performance of descent algorithms.

On the other hand, natural optimisation algorithms can yield lower average error rates, but never low enough
to qualify for convergence (as defined by a squared error of < 1 x 107°). However, the performance of natural
optimisation algorithms is unaffected by the choice of initial conditions.

Hybrid algorithms attempt to overcome the limitations of descent algorithms by applying a genetic algorithm
to select Rs and X,5. In other words, a baseline descent algorithm (e.g. NR, Damped NR, LM, etc) is run with
fixed values for Rs and X5, which are in turn iteratively selected using a genetic algorithm in an outer loop. A
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Figure 9: Flowchart for genetic algorithm
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flowchart of the proposed hybrid algorithm is shown in Figure A more detailed description of the proposed
algorithm follows.

An initial population of n,,, estimates for R and X, are randomly sampled from a uniform distribution with
upper and lower limits as shown in Table[d] Each pair of estimates is referred to as a member of the population.

Range of Initial Estimate (pu)
Parameter
Lower Bound | Upper Bound
R 0 0.15
Xr2 0 0.15

Table 4: Range of initial parameter estimates

The descent algorithm is then run on each member of the population. The fitness of each member (in terms
of the squared error F'F) is calculated and ranked. The lowest fitness members are discarded and the rest are
retained to form the mating pool for the next generation (there are np,, members in the mating pool).

The fittest n. members in the mating pool are retained for the next generation as elite children. Of the
remaining nypo, — N children to be created for the next generation, c¢;% will be produced by crossover and the
rest (1 — ¢;%) by mutation. The proportion ¢y is called the crossover fraction.

1. Crossover: in the crossover process, two members of the mating pool are randomly selected and combined
by taking a random blend of each member’s parameters, e.g. the crossover of parameter Ry:

Rs,child = aRs,parentl + (1 - Q)Rs,parentQ (50)

where « is a random variable selected from a uniform distribution over the interval [0, 1]

2. Mutation: in the mutation process, a member of the mating pool is randomly selected and its parameters
are mutated by adding Gaussian noise with standard deviations of 0.01.

The descent algorithm is then run for the next generation of estimates for Rs; and X,o. The fitness is calculated
and the process repeats itself for ng., generations. If at any point during the process the descent algorithm
converges, then the hybrid algorithm stops and selects the parameter estimates from the converged descent
algorithm as the solution. Otherwise, the parameter estimates yielding the best fitness after ny., generations
are selected.

The recommended settings for the hybrid algorithm implemented in Moto are shown in Table

Setting Setting Description Default Value
Npop Population of each generation 15
Npool Number of members in the mating pool 10
e Number of elite children 2
cr Crossover fraction 80%
Ngen Maximum number of generations 10

Table 5: Recommended settings for hybrid algorithm
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4 Using the Program

Moto is quite straightforward to use. Simply fill in the details of the motor at the top the main screen
(see Figure , select the model and algorithm settings and then press the” Calculate” button. The resulting
equivalent circuit parameters will appear in per unit values at the bottom of the screen. The torque-speed and
current-speed curves implied by the estimated parameters can then be viewed by pressing the ”Plot” button

(see Figure [12).

= SPE Moto | Induction Motor Parameter Estimation Tool

File  Help
Motor Details Calculate l [ Plot ]
Description | Toshiba 6.6k 350k |
Synchronous speed | 1500.0 | rpm
Rated speed |1431,|:| | rpm Breakdown torque T/Tn
Rated power Factar ||:|,3? | pf Locked rotar korque T/Tn
Rated efficiency ||:|,91 | pu Locked rotar current pu
Motor Model R-‘-ﬂ X 5
oL}
Model Double cage Vl X" 1 sz
U, [] R. Xm
. . Rr- 1 Il’r 2
Algorithm Settings s 5
o
Algarithm |Newtnn-Raphsnn w |
Mazximurn # iterations |3|:| | Linear constraint k_r
Convergence criterion | 1e-05 | Linear conskraint k_x
Algorithm Results
R_s |0.01553 | wn 0.11593 Converged? ves
Hs |0.07356 | RN 0.01553 Squared Errar 4,108
%_m |2.54404 | w2 0.03678 Tterations
Rt |18,50613 | R 0.16818

Figure 11: Moto main screen

4.1 Algorithm Settings

Algorithm: select between the seven algorithms described in Section

Maximum # iterations: is applicable to descent and hybrid algorithms and is the maximum number of
iterations that the algorithm will execute without reaching convergence.

Convergence criterion: is the squared error value that the algorithms use as the convergence point. An
algorithm will stop if it produces an estimate with a squared error below this covergence criterion. By default,
the convergence criterion is 1 x 107°.

Linear constraint k_r: is only applicable to descent algorithms. The linear constraint k_r is the constant
factor used to calculate the stator resistance R (refer to Section [3.1.1)).
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Figure 12: Moto plotting function

Linear constraint k_x: is only applicable to descent algorithms. The linear constraint k_x is the constant
factor used to calculate the outer cage rotor reactance X2 (refer to Section [3.1.1)).

Maximum # generations: is applicable to genetic and hybrid algorithms and is the maximum number of
generations that the algorithm will evolve (refer to Section [3.4]).

Members in population: is applicable to genetic and hybrid algorithms and is the number of members in
each generation of estimates (refer to Section [3.4)).

Members in mating pool: is applicable to genetic and hybrid algorithms and is the number of members that
are retained for mating in each generation (refer to Section [3.4)).

Elite children: is applicable to genetic and hybrid algorithms and is the number of elite children that will be
spawned for each generation (refer to Section [3.4)).

Crossover fraction: is applicable to genetic and hybrid algorithms and is the number of children that will be
created through the crossover process (refer to Section |3.4).

4.2 Algorithm Results

R_s: is the stator resistance (in per unit)

X _s: is the stator reactance (in per unit)

23



X_m: is the magnetising reactance (in per unit)
R_c: is the core loss resistance (in per unit)

X _rl: is the inner cage rotor reactance (in per unit)
R_rl: is the inner cage rotor resistance (in per unit)

X _r2: is the outer cage rotor reactance (in per unit)

R _r2: is the outer cage rotor resistance (in per unit)

Converged: is a Yes / No status indicating whether the algorithm has converged.

Squared Error: is the resulting squared error of the algorithm

Iterations: is the number of iterations (or generations) that the algorithm executed

4.3 Saving and Loading
Moto can save and load otor data using the ”Save as...” and ”Open File...” items respectively in the File menu.

The motor details and algorithm settings are saved in the Moto data files. Note that algorithm results are not
saved and need to be re-calculated.

4.4 Plotting

The torque-speed and current-speed curves of the motor can be shown by pressing the "Plot” button. The
resulting figure can be panned, zoomed and saved as an image using the toolbar at the bottom of the dialog
box.

24



5 Troubleshooting

5.1 Algorithm Not Converging

Not all motors have a convergent solution. In some cases, the motor’s performance cannot be characterised by
a single cage or double cage model with constant parameters. In such cases, the best approximation is desired
and this is application-dependent. For example, if a motor starting study is required, then a more accurate
representation of the motor’s starting characteristics is more important than high accuracy at low slip values.
Thus the motor parameters can be tuned to result in better starting performance while perhaps sacrificing
accuracy at motor breakdown.

In other cases, a valid solution exists, but the selected algorithm is not reaching it. Here, the squared error
value is an important guide to check whether changes in algorithms and settings are having a positve or negative
effect.

Based on our experience, we recommend the following general workflow for solving induction motor parameter
estimation problems using double cage models:

1. As an initial attempt, use the conventional Newton-Raphson algorithm with fixed linear constraints k, = 1
and k, = 0.5

2. If there is no convergence, use the damped NR algorithm with fixed linear constraints k, = 1 and k, = 0.5
If there is no convergence, try the LM algorithm with fixed linear constraints k, =1 and k; = 0.5
If there is no convergence, try the hybrid DNR-GA algorithm

If there is no convergence, try the hybrid LM-GA algorithm

A A o

Finally, if there is still no convergence, use the genetic algorithm with 50 to 100 generations to give a
solution with an adequately low squared error value

5.2 Bugs

If you find a bug in the software, please send us a mesasge at contact@sigmapower.com.aul
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7 Release Notes

For any comments, suggestions or bug reports, please get in touch with us at |contact@sigmapower.com.aul

7.1 Version 0.2

Added Newton-Raphson solver for single cage model (with core losses)

7.2 Version 0.1

This is a preliminary release of Moto that is restricted to estimating parameters for the double cage model with
core losses. In future versions, single cage models and motor models without core losses will be implemented.
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